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Erzeugung und Abfangreaktionen eines
formalen 1:1-Komplexes aus Singulett-
Kohlenstoff und 2,2'-Bipyridin**
Robert Weiss,* Silvia Reichel, Matthias Handke und
Frank Hampel

Professor George A. Olah zum 70. Geburtstag gewidmet

2,2'-Bipyridin ist ein klassischer Chelatligand für Metalle
wie auch Nichtmetalle in verschiedenen Oxidationsstufen und
Bindungsformen.[1, 2] Für alle Oxidationsstufen des Kohlen-
stoffs hingegen sind analoge Komplexe unserer Kenntnis nach
unbekannt. Nachfolgend berichten wir über eine erste derar-
tige Verbindung. 1994 beschrieben wir die ersten SN-Reak-
tionen am a-C-Atom von Aryliodonio-Diazoverbindungen.[3]

Mit AsPh3 als Nucleophil erhielten wir dabei die Diazover-
bindung 1, die als Edukt für die neue Stoffklasse diente.

Die Umsetzung von 1 mit Trifluormethansulfonsäure
(HOTf, Schema 1) lieferte in hoher Ausbeute das Arsonium-
salz 2 als Resultat einer säureinduzierten Fragmentierung der
tert-Butylester-Funktion, gefolgt von einer Proto-Dediazonie-
rung.[4] 2 ist ein potentes 1,1-Biselektrophil, das sich unter

Schema 1. Synthese von 3-2OTf und dessen Deprotonierung zu 4-OTf.

anderem mit einer Fülle von neutralen Nucleophilen zu
symmetrischen und unsymmetrischen geminalen Bis(onio)-
substituierten Salzen umsetzen lieû.[5] Bei der Reaktion von 2
mit 2,2'-Bipyridin als Bisnucleophil entstand entsprechend
das cyclische Bis(onio)-substituierte Salz 3-2OTf, ein Bisazo-
nia-Analogon von Fluoren. Unter den Reaktionsbedingungen
wurde diese C-H-acide Verbindung durch im Überschuû

vorhandenes 2,2'-Bipyridin in 4-OTf überführt (Schema 1)
und nach Anionenaustausch als das besser kristallisierende
4-Br isoliert (Ausbeute: 75 % bezogen auf 2).[6] Abbildung 1
zeigt das Ergebnis der Röntgenstrukturanalyse von 4-Br ´
H2O.[7]

Abb. 1. Struktur von 4-Br ´ H2O im Kristall. Wichtige Abstände [�] und
Winkel [8]: C1-N1 1.338, N1-C8 1.394, C7-C8 1.387, C8-C9 1,41, C9-C10
1.34, C10-C11 1.41, C11-C12 1.33, C12-N1 1.39; N1-C1-N2 107.6.

In den 1H-NMR-Spektren der Salze 4-Br und 4-OTf fällt
die groûe 1H-13C-Kopplungskonstante (232.59 Hz) der C-H-
Bindung des Fünfrings auf, die nahezu einer sp-Hybridisie-
rung des C-Atoms in dieser Bindung entspricht (exakt:
sp1.15).[8] Eine PM3-Rechnung in Verbindung mit einer
NBO-Analyse[9] lieferte hierzu die Hybridisierung sp1.23.
Dieser präzedenzlose Befund läût sich qualitativ auch mit
den Regeln von Bent[10] ableiten: Das die Sechsringe verbrük-
kende C-Atom in 4 (¹Brücken-C-Atomª) trägt mit den N-
Zentren zwei stark elektronegative Substituenten, die in den
mit ihnen verbundenen C-Hybridorbitalen einen hohen p-
Anteil induzieren sollten. Dies führt automatisch zu einem
hohen s-Gewicht im verbleibenden s-Orbital des trigonal-
planar umgebenen Brücken-C-Atoms.

4-Br lieû sich mit HOTf im Überschuû in THF quantitativ
in das Dikationsalz 3-2OTf überführen, den ersten isolierba-
ren s-Komplex einer SE-Reaktion an einem Imidazolium-
system. Die 1H-13C-Kopplungskonstante für die geminalen C-
H-Bindungen entspricht mit 170.65 Hz einer für ein gesättig-
tes C-Atom höchst ungewöhnlichen sp1.93-Hybridisierung in
diesen Bindungen.[8]

4-Br lieû sich mit KOtBu in THF bei ÿ30 8C rasch und
quantitativ zur neutralen Spezies 5 deprotonieren, die unter
diesen Bedingungen einige Stunden stabil war (Schema 2).

Schema 2. Folgereaktionen von 4-Br.

Das 13C-NMR-Spektrum der Reaktionslösung zeigt fünf
Signale im Bereich d� 114 ± 129 und ein sechstes Signal bei
d� 196.41 für das Brücken-C-Atom. Dieser Wert ist gegen-
über den entsprechenden Signalen von Arduengo-Carbenen
nur wenig hochfeldverschoben und nach Untersuchungen von
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Chen et al. an dimerisierten Arduengo-Carbenen mit einem
Dimer von 5 unvereinbar.[11, 12] 5 läût sich durch eine Vielzahl
von Elektrophilen in hohen Ausbeuten abfangen.[13] So führte
die Umsetzung mit Selen zum Chalkogenon 6, das durch
Röntgenstrukturanalyse charakterisiert wurde (Abb. 2).[14]

Abb. 2. Struktur von 6 im Kristall. Wichtige Abstände [�] und Winkel [8]:
Se1-C1 1.826, C1-N1 1.364, C1-N2 1.378, N1-C6 1.39, C6-C7 1.377, N1-C2
1.39, C2-C3 1.34, C3-C4 1.41, C4-C5 1.34, C5-C6 1.41; N1-C1-N2 103.8.

6 ist gekennzeichnet durch weitgehende Doppelbindungs-
lokalisierung im Kohlenwasserstoffbereich und partielle De-
lokalisierung im Selenoharnstoff-Strukturelement. Dabei sind
die C(Se)-N-Bindungen bei 6 länger und die C-Se-Bindung
kürzer als bei einem offenkettigen Selenoharnstoff (jeweils
um ca. 0.04 �).[16] Dies deutet auf Hybridisierungsverhältnisse
am Brücken-C-Atom hin, die denen in 4-Br entsprechen.

Die zweistufige Deprotonierung des Dikations 3 hat eine
tiefgreifende elektronische Umstrukturierung zur Folge.
Während 3 als bisquaternisiertes Bipyridin zwei aromatische
Ringe enthält, ist 4 (in 4-Br ´ H2O, siehe Abb. 1) eher durch die
Grenzstruktur 4 B (siehe Schema 1) mit einem reduzierten
Bipyridin-Subsystem geprägt. Die nochmalige Deprotonie-
rung von 4 sollte dann zu einem noch stärker lokalisierten p-
System führen, das nach ab-initio-Rechnungen (3-21G*)[17]

besser durch die (für Arduengo-Carbene typische) Grenz-
struktur 5 B als durch die Bisylid-Form 5 A charakterisiert ist
(siehe Schema 2). 5 A dürfte eher für die Beschreibung
angeregter Zustände eine Rolle spielen und dient als Hinweis
auf eine strukturelle Verwandtschaft dieser Stoffklasse mit
¹echtenª Bisyliden wie Carbodiphosphoranen. Diese wurden
schon frühzeitig als formale Komplexe eines angeregten
Singulett-C-Atoms mit zwei Molekülen Triorganophosphan
als stabilisierenden Donorliganden erkannt.[18] Sinngemäû
läût sich 5 als Chelatkomplex aus einem solchen C-Atom und
2,2'-Bipyridin auffassen. Daû diese Sichtweise über das rein
Formale hinaus auch durch thermodynamisch mögliche C1-
Transferreaktionen belegbar ist, läût sich für geeignete Reak-
tionspartner durch Modellrechnungen (3-21G*) zeigen. So
sollte 5 gemäû der isodesmischen Gleichung (1) mit N,N'-

Dimethyl-1,4-diazabutadienin einer hochexothermen Reak-
tion (DHf�ÿ51.06 kcal molÿ1) zum entsprechenden stabilen
Imidazol-2-yliden und 2,2'-Bipyridin reagieren, weshalb sich 5

wesentlich besser zur C1-Übertragung eignen müûte als
Arduengo-Carbene. Über die experimentelle Realisierung
dürften kinetische Faktoren entscheiden.

Koordiniert man an das Nucleophil 5 ein Elektrophil, so
lassen sich für die resultierenden Addukte zwei elektronische
Grenzfälle unterscheiden: Hat der am Brücken-C-Atom
fixierte Substituent Donorcharakter, so dominiert Grenz-
struktur 7 (Beispiel: das Selon 6). Ist der Substituent hingegen
ein Acceptor, so ist das Addukt durch die komplementär
polarisierte Grenzstruktur 8 charakterisiert. Diese struktu-

relle Klassifizierung haben wir bereits experimentell bestä-
tigt.[19] Die Einführung des Carbens 5 in organische und
anorganische Substrate erzeugt somit einen Ligandentyp, der
sich optimal an die elektronischen Bedürfnisse des Substrats
anpaût. Denn das systemimmanente zweistufige Bipyridini-
um-Redoxsystem von 5 kann über seine Red- (Situation in 7)
und Ox-Form (Situation in 8) ± sozusagen als eingebautes
Umpolungsreagens ± den elektronischen Anforderungen am
Brücken-C-Atom flexibel entsprechen. Eine vergleichbare
elektronische Flexibilität haben entsprechende Addukte der
Arduengo-Carbene nicht.

Experimentelles

Alle Reaktionen wurden unter Stickstoff mit wasserfreien, N2-gesättigten
Lösungsmitteln in Schlenk-Gefäûen durchgeführt. Korrekte C,H,N-Ana-
lysen liegen vor.

2 : 4.560 g (7.65 mmol) 1 wurden in 20 mL CH2Cl2 vorgelegt und mit
0.71 mL (8.0 mmol) HOTf versetzt. Nach kurzer Gasentwicklung wurde
noch 36 h bei Raumtemperatur gerührt, wobei sich die Lösung braunrot
verfärbte. Nach Einengen der Lösung im Vakuum auf ca. 5 mL wurde das
weiûe Produkt mit 150 mL Et2O gefällt. Es wurde abfiltriert, mit 25 mL
Et2O gewaschen und 2 h im Vakuum getrocknet. Ausbeute: 4.303 g (91 %).
1H-NMR (400 MHz, CDCl3): d� 6.52 (s, 2 H; CH2), 7.73 (m, 12H; C6H5),
7.82 (m, 3H; C6H5); 13C-NMR (100 MHz, CDCl3): d� 68.51 (CH2), 118.13
(C1), 118.16 (q, 1J(C,F)� 320 Hz; F3CSO3CH2), 120.47 (q, 1J(C,F)�
320 Hz; F3CSOÿ

3 ), 131.24 (C3/C5), 133.05 (C2/C6), 135.10 (C4); 19F-NMR
(470 MHz, CDCl3, C6F6): d�ÿ73.07 (F3CSO3CH2), ÿ78.62 (F3CSOÿ

3 ).

4-Br: Eine Lösung von 1.208 g (1.95 mmol) 2 in 60 mL CH3CN wurde mit
0.671 g (4.30 mmol) 2,2'-Bipyridin versetzt und 5 d unter Rückfluû erhitzt.
Nach Abziehen des Lösungsmittels im Vakuum rührte man den Rückstand
2 h in 50 mL Et2O, filtrierte, wusch mit 15 mL Et2O und trocknete 2 h im
Vakuum. Man löste den Feststoff in 50 mL CH2Cl2 und versetzte mit einer
Lösung von 1.290 g (4.00 mmol) NBu4Br in 10 mL CH2Cl2. Nach 2 h
filtrierte man von Ungelöstem ab, fällte mit 100 mL Et2O einen gelbbrau-
nen Feststoff, der filtriert, mit 20 mL Et2O gewaschen und 2 h im Vakuum
getrocknet wurde. Kristallisation aus EtOH ergab dunkelgelbes 4-Br.
Ausbeute: 0.365 g (75 %). Für eine Röntgenstrukturanalyse geeignete
Kristalle bildeten sich in einer übersättigten Lösung in EtOH bei Raum-
temperatur. 1H-NMR (400 MHz, [D6]DMSO): d� 7.56 (m, 4H), 8.69 (m,
2H), 9.07 (m, 2 H), 10.40 (s, 1 H); 13C-NMR (100 MHz, [D6]DMSO): d�
116.01 (Brücken-C-Atom), 118.76, 120.38, 121.71, 122.65, 123.34.

3-2OTf: 0.295 g (1.18 mmol) 4-Br wurden in 20 mL THF suspendiert und
bei ÿ20 8C mit 0.23 mL (2.61 mmol) HOTf versetzt. Nach 18 h filtrierte
man, wusch mit 10 mL THF sowie 10 mL Et2O und trocknete den weiûen
Feststoff 2 h im Vakuum. Ausbeute: 0.497 g (90 %). 1H-NMR (400 MHz,
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Synthese und Struktur von RbCuSb2Se4 ´ H2O,
einer Verbindung mit dreidimensionalem
Gerüst und nanometergroûen Poren**
Jason A. Hanko und Mercouri G. Kanatzidis*

Verbindungen mit offenen Gerüststrukturen, die auf an-
deren Chalkogenen als Sauerstoff basieren, werden syntheti-
siert, um Zeolithanaloga mit Halbleitereigenschaften zu
erzeugen.[1] Über die gezielte Herstellung derartiger Verbin-
dungen auf Germanium- und Zinnsulfidbasis wurde bereits
1989 berichtet.[2] Danach verstärkten sich die Forschungsak-
tivitäten schnell, und Verbindungen wie [Et4N]2Cu2Ge4S10,[3]

[Me4N]2MGe4S10 (M�Mn,[4, 5] Fe,[5, 6] Co,[5] Zn[5]) sowie
[Me4N]6(Cu0.44Ge0.56S0.73)Ge4S10 wurden synthetisiert.[7] Übli-
cherweise werden derartige Verbindungen hydrothermal
hergestellt, wobei die gewünschten Strukturen häufig durch
Selbstorganisation geeigneter Molekülbausteine in Gegen-
wart von organischen Templationen erhalten werden. Unter
Verwendung dieser Methode konnten wir zeigen, daû
[EQ3]3ÿ-Einheiten (E�As, Sb; Q� S, Se) vielseitige Bau-
steine sind, aus denen sich interessante Verbindungen wie
KBi3S5,[8] (Ph4P)InSe12,[9] (Me4N)HgAs3S6,[10] (Me4N)-
RbBiAs6S12,[11] und [Co(en)3]CoSb4S8 herstellen lassen.[12]

Übergangsmetallzentren sind zur Bildung ausgedehnter ver-
netzter Strukturen nicht in allen Fällen nötig. Einige dieser
Germanium-,[13] Zinn-[14±22] und Antimonsulfidgerüste[23, 24]

lassen sich auch durch Kondensieren molekularer Bauein-
heiten erhalten. Hier berichten wir über die neuartige,
dreidimensional vernetzte Verbindung RbCuSb2Se4 ´ H2O 1,
die durch Erhitzen von CuCl mit Rb3SbSe3

[25] und Ph4PBr in

CD3CN): d� 7.41 (s, 2 H; CH2), 8.41 (m, 2 H), 8.97 (m, 4H), 9.35 (m, 2H);
13C-NMR (100 MHz, CD3CN): d� 77.65 (CH2), 120.72 (q, 1J(C,F)�
320 Hz; CF3), 125.28, 131.35, 142.95, 144.21, 150.34.

5 : Eine Suspension von 0.097 g (0.39 mmol) 4-Br in 3 mL THF wurde bei
ÿ30 8C mit 0.065 g (0.58 mmol) KOtBu versetzt. Nach 30 min filtrierte man
bei ÿ60 8C die anorganischen Bestandteile (KBr, überschüssiges KOtBu)
über Celite ab. Das orangefarbene Filtrat lieû sich NMR-spektroskopisch
vermessen. 13C-NMR (100 MHz, THF, ÿ30 8C, [D6]Aceton): d� 114.12,
117.44, 117.64, 121.83, 128.72, 196.41.
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rung ´ Imidazolylidene
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